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Part I : CODE DESIGN

Abstract
The first part of this paper presents a simple and systematic technique for constructing multi-
dimensional MPSK TCM codes. The construction is based on a multilevel concatenation
approach, in which binary convolutional codes with good free branch distances are used as
the outer codes and block MPSK modulation codes are used as the inner codes ( or the
signal spaces ). Conditions on phase invariance of these codes are derived and a multi-
stage decoding scheme for these codes is proposed. The proposed technique can be used to
construct good codes for both the AWGN and fading channels as is shown in the second part

of this paper.

1. Introduction

Since the publication of the celebrated paper by Ungerboeck in 1982 {1] on trellis coded
modulation(TCM), there has been a boom of research in this area. Over the last fourteen
years, researchers have proposed various techniques of constructing modulation codes using
both convolutional codes (Trellis Coded Modulation (TCM ))[1-7) and block codes ( Block
Coded Modulation (BCM) )[8-14). Almost all existing techniques for constructing TCM
codes rely heavily on computer searches to find good TCM codes. These techniques work
very well for small code complexities and rates. However, for large code complexities and

high rates, the search becomes extremely time consuming (if not impossible) and a more



systematic technique of construction is required. Most of the problems associated with alge-
braic construction of TCM codes arise due to the lack of indepth knowledge of convolutional
codes. In addition, the nonlinearity of the mapping function ( true for most signal constel-
lations ) which maps the coded output bits of the convolutional encoder onto the signal set,
complicates the problem further. BCM codes on the other hand, have the advantage of be-
ing extremely rich in algebraic structure and phase symmetry, as has been shown in [10-13].
BCM codes however, have the disadvantage of being slightly poor in performance for low
SNR ( signal-to-noise ratio ), as compared to TCM codes of the same decoding complexity,

due to the large number of nearest neighbors.

Pietrobon et. al. extended Ungerboeck’s results to multi-dimensional MPSK signal con-
stellations [3]. They proposed a set partitioning technique for multi-dimensional MPSK
signal constellations similar to Ungerboeck’s set partitioning technique and then used com-
puter search to design multi-dimensional MPSK TCM codes. However, due to the limitations
of computer search, as were outlined above, they restricted themselves to 4 x 2-dimensions.
In addition, to reduce the search complexity, they placed some other restrictions on the
computer search. Multi-dimensional MPSK TCM codes have various advantages over 2-
dimensional Ungerboeck TCM codes, the main ones being: (1) higher spectral efficiencies
can be achieved; (2) codes constructed over multi-dimensional MPSK signal constellations
have better phase invariance properties than that of 2-dimensional Ungerboeck MPSK codes;

and (3) lower average decoding complexities to achieve the same performance.

A common point to be noted among all the construction techniques available in literature
( whether TCM or BCM ) is that the modulation codes constructed by these techniques re-
quire large decoding complexity to achieve large coding gains. The large decoding complexity
of these codes makes them impractical for applications where high reliability and high data
rates are required. As such, what is required is a multi-stage decoding technique which

reduces the decoding complexity, while maintaining good performance.

This paper presents a simple and systematic technique for designing multi-dimensional



MPSK TCM codes with minimal computer search. The technique will be used to construct
good codes for both the AWGN and fading channels. Though the main emphasis has been to
construct codes for the MPSK signal constellation, the results are applicable to other signal
constellations as well and modifying the existing construction for other signal constellations
is straight forward. This paper is organized as follows: section 2 of the paper presents a new
concept, branch distance of convolutional codes, which will be used extensively in the later
sections. Section 3 outlines the basic construction technique of the proposed codes, and in
addition shows that the codes constructed in [3] turn out to be a special case of the proposed
construction. Section 4 discusses phase invariance. In section 5, a multi-stage decoding
algorithm for the proposed codes is presented and it’s decoding complexity is discussed.
Section 6 concludes by discussing the design rules for constructing good codes using the

proposed technique.
2. Branch Distance of Convolutional Codes

For two code sequences u and v in a binary linear convolutional code, the branch
distance between them, denoted d;(u,v), is defined as the number of branches in which u
and v differ ( or equivalently, this is simply equal to the number of non-zero branches in uév,
where @ denotes binary addition ). For a code sequence u in a binary linear convolutional
code, the branch weight of u denoted wy(u) is simply the number of non-zero branches
in u ( or equivalently wy(u) is the branch distance between u and 0, where O refers to
the all-zero code sequence, i.e., wy(u) = dy(u,0)). The minimum free branch distance of a
convolutional code C, denoted dp_f,ee, is the minimum branch distance between any two

code sequences, i.e.,
dB.free = min{dy(u, v) : u,v € C and'u # v} (2.1)

Theorem 1: For a rate k/n feedforward binary linear convolutional code of total encoder

memory 7, its minimum free branch distance, dg_;ee, is upper bounded by 1 + lv/k].

Proof: Let the k inputs to the encoder be denoted as Ii, I, --- I and let the encoder



memories associated with input J; be 4; for 1 <i < k. Let min{wy(u)} denote the minimum
branch weight among all the code sequences associated with the binary linear convolutional
code. Let min:-;, i = 7;. Consider that the binary sequence (1,0,0,--- ) is fed into the input
I; and the all zero sequence (0,0,0,- - -) is fed into the remaining inputs. The branch weight
of the resulting code sequence is upper bounded by 1 + v;. Hence, min{w,(u)} < 1+ ;.
Since the code is linear, this also corresponds to an upper bound on the minimum free branch
branch distance, i.e., dg_free < {1+ r'xiiln'y.'}. Given any 4 and k, the idea is to maximize
dB.free- Hence, Tix(dB-free) < n_1yix{1 + rlxiiln'y,-}, i.e., the best dpg_f.q. for a given 4 and
is<{l+ rr‘ly.akx{rgl:iln'y.-}}. It is readily seen that the value of n‘lﬂ.x{r‘xilln'y.} is |v/k]. AA
Theorem 2: If dB.free = 1 + [7/k], then NB_freer the number of codewords with branch
weight dp_f1..., is lower bounded by (2° — 1) where p is the number of inputs of the convo-

lutional encoder which have an encoder memory of |y/k] associated with it.

Proof: Let e; denote the binary sequence (1,0,0,- - ) i.e., 1 followed by the all zero sequence
and let eg denote the all zero binary sequence (0,0,0,- - -). Consider any non-zero code
sequence u. Then wy(u) > 1 + |y/k|. Let the p inputs which have an encoder memory of
|7/k] associated with it be I; for 1 < j < p. Consider that eg is fed into the inputs I; for
p+1 <7 < k. Also, consider that the inputs I; for 1 < j < p can take only one of the
two sequences eg or e;. Then the convolutional encoder under this constraint has (2?-1)
distinct non-zero input sequences. Each of the (27 — 1) sequences will have branch weight
< 1+ |v/k). Since dg free = 1+ |7/k], each of the (27 — 1) sequences thus has branch
weight 1 + [v/k|. Hence, Np_free > (2° - 1). AA

A binary linear feed-forward convolutional code is said to be optimal in terms of branch
distance if it achieves the upper bound as stated in theorem 1 for a given v and k. Also, a
code is said to be optimal in terms of the free Hamming distance, dY.frees if it achieves the
maximum dy_.. possible for a given v,k and n as specified in [15]. Note, from theorem
1, for a given dp e, higher encoder memory is required to achieve the same dB.free 38

k increases, i.e., given a certain fixed dB_frees there is a tradeoff between complexity and
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rate. In addition, as is shown in theorem 2, Np .. also increases as the rate increases and
hence there is also a tradeoff between rate and performance. A search has been performed
on rate-1/2, -2/3 and -3/4 codes to find the best ones in terms of dB_free 20d Np_free- The

results are given in Tables 1 , 2 and 3.

An important point to note is that codes optimum in terms c;f branch distance may
not be optimum in terms of the free Hamming distance dH-free and vice-versa. For small
values of 7, it has been observed that codes optimum in terms of branch distance are also
optimum in terms of djy_f e, however, the same does not hold for higher values of 4. From
Table 1 we notice that up to 4 = 7, the search yields codes which meet the upper bound
in terms of dp {00, however from that point on, the best codes start falling short of the
upper bound by 1. Codes shown in Tables 2 and 3 meet the upper bound, however as the
complexity increases, Ng_frqe also starts increasing. Also listed in the tables is the dY free
and NY_freer the number of codewords with dl.free- The code generators in the tables have
been listed in octal with the lowest degree on the left and the highest on the right, e.g.,
(622); =14+ D + D*+ D7. As an example, consider the 8th code listed in Table 1. This is a
rate-1/2 convolutional code with generators 14+ D+ D*+ D" and 1+ D*+ D3+ D*+ D5+ D¢+ D8
and dpg_free = 8.

3. Construction of Multi-dimensional MPSK Codes

The proposed multi-dimensional MPSK codes are constructed using a q level concatena-
tion approach as shown in Figure 1. Outer codes in the multi-level concatenation may be
either block or convolutional, binary or non-binary. However, in this paper we will focus on

binary convolutional codes as the outer codes.
Outer Codes:

The outer code, C;, at the i-th level for 1 < i < ¢ is chosen to be a convolutional code
of rate k;/n; with optimum branch distance for the given rate and state-complexity. The

parameters k; and n; depend upon the choice of the inner codes, as will be clear after the



discussion of inner codes. Each outer code is selected from the tables mentioned in section
2. The reasons for selecting an optimum branch distance convolutional code will be clear

when discussing theorems 4, 5 and 6.
Inner Codes:

Let S denote the two-dimensional MPSK signal constellation which consists-of 2¢ signal
points. Let S™ denote the set of all m-tuples over S, where m is a positive integer. Since
S is a two-dimensional signal space, S™ is an m x 2-dimensional signal space in which each
signal point is a sequence of m MPSK signals. To construct the proposed codes, the signal
space is chosen as a subspace of S™, denoted Aq. In this paper, Ao is constructed using the
multilevel coding method proposed by Imai & Hirakawa [8].

Using the set partitioning approach proposed by Ungerboeck in [1], each signal point
in the set S is labeled by a string of symbols from GF(2). Since S contains 2¢ signal
points, we shall consider a labeling whose set of label strings is of the following form: L =
{araz --- a;:a; € GF(2) for 1 < i < ¢£}. Let X denote the one-to-one mapping from L
to S. If aja; --- a¢ is the label for a signal point s, then s = A(ayaz --- ag). Define an
addition “+” on the label set L as follows: For two labels, a1a; -+ a; and aja; - @, in
L,aa - a + a'la; a', = a'lla;' a; where a;' = a.-GBa; forl1 <i<¢fand @ is
the modulo-2 addition. With this addition, L is simply the vector space of all £-tuples over
GF(2). We call L the label space for S.

For 1 <1 < ¢, let Co; be a binary (m, ko, 6o,;) linear block code of length m, dimension

ko; and minimum Hamming distance 6p;. Let
Vi = (vi1,vi2, * - Vim) (3.1)
be a code word in Cy; for 1 <i < ¢. We form the following sequence :
Vi*xVex ... 2V, 2 (viv2,0 -+ Vg1, V1V 2 Vg, -, V1mY2,m " Vm) (3.2)
For 1 < j < m, we regard v, jus - - vz as the label for a signal point s; in the MPSK signal
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set S. Then Vy » Vg ... * V,is simply an m-tuple over the label set L and

AVi«Va .o V) = (Mviavan---ver), Mviavaz- - vea), -+, A(VimV2,m - vem))

= (81,82 """, 3m) (3.3)

is an m-tuple over the MPSK signal set S ( a sequence of m MPSK signals ) which is a
signal point in the m x 2-dimensional signal space S™. From codes Co,i for l_s t < ¢, we

form the following set of m-tuples over the label set L :
Con*Coz* -+ *Cor={V1*Vax .- xV, : V1 €Coy, V2 € Coy, --- Vi€ Coe} (3.4)

We will denote Coy * Coz % -+ *Cpy by . Then, 0 is a vector space ( or a linear code
) over L ( a subspace of the vector space of all the m tuples over L, denoted L™ ). Q has
Q%01 thoz+ kot yectors. Hence, the dimension of Qo is 0o = ko3 + koo + -+~ + ko.. Recall,
that for 1 <4 < ¢, n; denotes the number of output coded bits of the convolutional encoder

at the 1-th stage of encoding. Choose
nit+nat - +ng=koy+koa+ -0 + ko= 0o (3.5)

Suppose each m-tuple in € is mapped into an m-tuple over the MPSK signal set S by the

mapping A(-). Then, we obtain the following subset of signal points in S™:
Ao 2 A(Q) = (A(V1 % Vz -+ «V,): V1€ Cox, V2 € Con, -+ Vi€ Coy)

The set Ag is a subspace of S™ with dimension 0. This subspace Aq is s.ctually a basic

{-level block MPSK modulation code of length m[8-14].

The performance of Ag over the AWGN channel depends upon the minimum squared
Euclidean distance and the number of nearest neighbors. The minimum squared Euclidean
distance of A can be calculated using results of [12]. On the other hand, the performance
of Ao over fading channels depends upon the minimum symbol distance, product distance,
number of nearest neighbors and the squared Euclidean distance to a lesser exteﬁt (17). The
minimum symbol distance of A, is given by [17] 6% = min’_, 6. Suppose, Ao has minimum

squared Euclidean distance A and minimum symbol distance §%.
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In the following, the subspace A of S™ will be used as the signal space for constructing
multi-dimensional trellis MPSK codes. Before presenting the code construction, we need to
define a subspace of Q for partitioning Q. For 1 < J< L let Gy, Coyy -+, C,; be a

sequence of linear subcodes of Cy; such that
Coi €C41, € +++ CC; CCoy. - (3-6)

Let k;; be the dimension and §;; be the minimum Hamming distance of C;; for 1 < < g.
Then Cj; is an (m, k;j, &) code. For 1 < i < ¢, we form the following linear code
over the labeling space L: @ = Ciy *C;3 % --- % Ciy. The dimension of this code is

oi=kix + kiz + -+ ki It is clear that for 1 <i < q,

D C iy (3.7)
It follows from (3.7) that Qy, 3, ---, Q, form a sequence of subspaces of §) and
CQ,C - CNHCN (3.8)
Forl1 <i:<gq,let
A &) (3.9)

Then, A; is a subspace of S™ with dimension dim(A;) = o;. Let the minimum squared
Euclidean distance of A; be A? and minimum symbol distance be 8. Equations (3.8) and

(3.9) imply that A,, A,, -- *y Ag form a sequence of subspaces of Ay and
AqC A1 C - CACA (3.10)
Suppose the binary codes, Cijwithl1<i<gandl< J < ¢, are chosen such that
n = 0;_1 — 0; (3.11)

It follows from (3.5) and (3.11) that
o1 =na+nz3+---+n,

g2 =n3+-:-+n,

Og-1 =14
g, =0



Qo and its subcodes 0,0, -+, are used to form a sequence of coset codes [7). Let
Uy *Uz % --- * U be a vector in Qg but not in £;. Then Uy * Uz --- x U, + N, is
a coset of ) in N and Uy * Uz x ... * U, is called the coset representative. Recall
n, = Zfﬂ(ko.g — k1,i). Hence, there are 2™ cosets of ), in Q. These 2™ cosets of 2, form
a partition of . Let 00/ denote the set of cosets in  modulo 0;. Qo/Q_l‘ is called a
coset code. Let [(0/0;] denote the set of coset representatives of the coset code o/
Hence Qo/ = (/0] + Q. Q) can be further partitioned using s, in the same way as is
outlined above. Partitioning each coset of 2, in £ on the basis of §;, we form the coset code
0/ /8. Let [Q,/9;] denote the set of coset representatives in the partition :/9,. Hence
each coset in the coset code 05/ /Q; can be written in the form /] + [U/] + .
Proceeding in this manner, we form the following sequence of coset codes:

By =/

By =Q/ /0

By = 00/fu/%u/ - 9
For 1 <1< gq, each coset in Bi_y = Qo/Q4/ - -+ /Oy consists of 2™ cosets modulo §;. These
coset codes are used as the inner codes in the multi-level concatenation in which B, is used

at the first level and B, at the ¢-th level.

Let wp and w; be two distinct points in . If these two points are in two distinct cosets
of B, then the squared Euclidean distance between s = A(wp) and s' = A(wyp) is at least A2,
If the two points wy and w(') are in the same coset of B; but distinct cosets of B;, then the
squared Euclidean distance between s and s’ is at least A}. Generalizing in this manner, it
is easy to see that if the two points wp and w, have identical coset representatives in B; for
1 < <1, but distinct coset representatives for B; then s and s’ have a squared Euclidean
distance of at least A?_,. Hence, B, is the least powerful and B, is the most powerful coset

code in terms of Euclidean distance.

The same arguments as above will also hold if the minimum squared Euclidean distance

at each stage is replaced by the corresponding minimum symbol distance.



Encoding of the m x 2-dimensional TCM code:

Encoding is accomplished in ¢ stages, as shown in Figure 1, and for 1 <i < ¢, the i-th
level encoding is accomplished in two steps: (1) at any time instant t, a message of k; bits
is encoded based on the convolutional outer code C; into an n;-bit coded block; and (2) the

ni-bit code block then selects a coset from the coset code B; = Qo/SU/--- /. _

The output at the i-th level encoder is a sequence of cosets from B;. All the possible
coset sequences at the i-th level form a trellis, and each branch in the trellis corresponds to
a coset in B;, and this trellis is isomorphic to the trellis of C;. Let vi denote a code sequence
in the convolutional code C; and let ¢: denote the mapping from the n; codéd output bits
of the convolutional code to the 2™ cosets. Hence, #i(vi) denotes the sequence of coset
representatives at the i-th stage of encoding, corresponding to the code sequence v;. Hence,

any code sequence in the m x 2-dimensional TCM code can be written in the form

A(d1(vi) + da(va) + -+ + @g(vq)). (3.12)

At every time instant ¢, the encoder puts out m MPSK signals.

A very interesting and special case of the proposed codes occurs when ¢ = 2 and the
second level outer code is left uncoded, as shown in F igure 2. This structure is equivalent
to the structure used for the construction of the multi-dimensional codes in [3]. A computer
search was used in (3] to find the convolutional code to be used at the first level. The
computer search selected a convolutional code which optimized the multi-dimensional code

both in terms of Euclidean distance and number of nearest neighbors.

A multi-dimensional code is said to be linear with respect to binary addition, if for any
two code sequences in the multi-dimensional code, U = A(éi(ur) + da(uz) + --- + ¢.(uq))
and V = A(¢y(v1) + da(v2) + --- + $¢(vq)),

UV 2 A((¢1(u1) + da(uz) + -+ + $e(uq)) + (S1(v1) + a(va) + -+ + 4y(vq)))

is also a code sequence, where u; and vi for 1 < i < ¢ denote output code sequences of

the convolutional code encoder C; at the i-th level. Linearity of the code ( in terms of
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binary addition ) simplifies the error analysis and in addition leads to a simpler encoder and
decoder. The linear structure leads to the following theorems on the linearity, minimum

squared Euclidean distance and minimum symbol distance of the proposed codes.

Theorem 3 : A multi-dimensional code is linear with respect to binary addition, if all the

mappings ¢;, for 1 <1 < q are linear. -

Proof : Recall, that any code sequence in a multi-dimensional TCM code can be written
in the form A(¢1(v1) + é2(v2) + -+ + @4(vq)) where v; for 1 < i < g denotes the output
code sequence of the convolutional code C; at the i-th level. The proof then follows trivially

from the definition of linearity.

Theorem 4 : The minimum free squared Euclidean distance of a coset trellis code at the
Fthlevel for 1 <7 < gislower bounded by D(Qj)' free 2 A}_l 'd(é)-free’ where d(é) free denotes
the minimum free branch distance of the convolutional code at th.e J-th level, C;.

Proof : Consider two distinct code sequences, U = A(¢;(u1) + ¢a(uz2) + --- + ¢,(uq))
and V = A(¢1(v1) + ¢2(v2) + -+ + ¢,(vq)), where u; and v;j for 1 < i < ¢ denotes two
output code sequences of the convolutional code C; at the i-th level. Assume that u; = v;j for
1 <t < jand uj # vj. At aparticular timeinstant ¢, let A(w) and A(w') be the corresponding
transmitted signal points for U and V respectively, where w and o' € Q. Siﬁce u; = vj
for 1 <1 < j and uj # vj, hence w and w' have identical coset representatives in B; for
1 <1 < 7 and hence the minimum squared Euclidean distance between A(w‘) and A(w') is at
least Af_l. Since C; has minimum free branch distance d(é)-{ree’ hence the two sequences uj

and vj are distinct in at least d(é)_ free branches. Therefore, the squared Euclidean distance

between U and V is at least A2 _, - d(é)free AA

Theorem 5 : The minimum free squared Euclidean distance of the overall TCM code is

lower bounded by D%ree 2 mingjce{AF ;- é)ﬁ-ee}

Proof : Consider two distinct code sequences U and V. Using the same notation as

developed in theorem 4, consider that uj = vjfor1 < < j and that uj # vj. Then, theorem
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4 gives us the minimum squared Euclidean distance between the two sequences. Since j is
arbitrary, the minimum squared Euclidean distance between the two sequences is obtained
by taking the minimum over all the g levels, i.e., if D?*(U, V) denotes the squared Euclidean
distance between the two sequences U and V, then D*(U, V) > miny¢jc, {A?_, - d(é)free}

Since U and V are any two sequences, the theorem follows. AN

Theorem 6 : The minimum symbol distance of the overall TCM code is lower bounded by
S > mimgje, {6 - d ¢ )

Proof : The proof is similar to that in theorem 5, with the only difference that instead of

minimum squared Euclidean distance we now consider minimum symbol distance. AA
4.A Spectral Efficiency

At each encoding time instant, k; + k2 + --- + k; bits are fed into the encoder (Figure
1), and the corresponding output is m MPSK signals. Hence the spectral efficiency of the
m X 2-dimensional TCM code is (k; + k2 + - -+ + k,)/m bits/symbol.

4.B Phase Invariance

Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring
rapid carrier-phase resynchronization after temporary loss of synchronization [2]. It is desir-
able for a modulation code to have as many phase symmetries as possible. Recall, that the
proposed multi-dimensional modulation codes are constructed using g convolutional codes
and ¢ + 1 basic £-level block modulation codes (Figure 1). The phase invariance of the
proposed codes is a function of both the inner codes and the outer codes. If convolutional
codes are used at all the ¢ levels, the phase invariance of the constructed modulation
codes would depend upon the structure of the convolutional codes used, and for most cases
the constructed modulation codes would have no phase invariance. A special case of the
proposed codes occurs when the outer code at the g-th level is left uncoded ( figure 2 shows
this special case for ¢ = 2 ). Most of the codes constructed using this special case do have

phase invariance. Kasami et. al. in [16] derived conditions on phase invariance of basic
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{-level block modulation codes. A slightly modified form of the conditions proposed in [16)

will be applicable to the proposed codes.

The following theorem gives the conditions for the proposed modulation codes to be

phase invariant under rotation for this special case.

Theorem 7: Let Ag = A(Co,1 xCo % - -+ *Cp ) and let Aot = MCyo1 1 *Cqmy g%~ 1-1.0)s
where Co; and C,_,; for 1 < ¢ < £ are binary linear block codes of length m. For1 < h <¢,
the multi-dimensional MPSK TCM code is phase invariant under 180°/2¢-* phase shifts if

the multi-dimensional TCM code is linear with respect to binary addition and:
1€Cyyp and (4.1)

Co,h . CO,h+l s Co,j—l C Cq_l__,‘ for h < ] < { (42)

where 1 denotes the all-one binary sequence of length m, and for two-binary m-tuples a =
(al)a% e am) and b = (blab27 e bm)a a-b é ((11 : b1,02 . b?s Y 2 bm)) where a - bi)

for 1 < < m denotes the logical product of a; and b;.
Proof: Appendix A

If the outer code at the g-th level is left uncoded, sequences of signal points from Apy
are valid code sequences. The best phase invariance that can be achieved for the overall
multi-dimensional code in this case is equal to the phase invariance of Aq-1. The conditions
as stated in theorem 7 provide a set of conditions which guarantee a certain ‘phase invariance
for the overall multi-dimensional MPSK TCM code independent of the convolutional codes
chosen. Most codes designed using the proposed technique, do achieve the best possible
phase invariance (i.e., of A;_; ).

5. Multi-stage Decoding Algorithm

One obvious way of decoding a TCM code proposed in section 3, is to form a super

trellis for the code, which is obtained by taking the direct product of the trellises of the

convolutional codes at the ¢ levels. The complexity associated with this technique ( for most

cases ) would be tremendous. We will focus on a multi-stage decoding scheme, in which the

13



deooding is carried out in g stages, corresponding to the ¢ levels of the multi-dimensional
TCM code. Let V = (s4,33,33, ) be the transmitted code sequence, where s; for 1 <
t < oo denotes a signal point in the MPSK signal constellation and let R = (r1,72,73,-+)
denote the corresponding received sequence. Using (3.12), V can be written in the form
V = AMé1(v1) + ¢a(v2) + -+ + ¢¢(vq)) where vi for 1 < i < ¢ denotes a code sequence in

the convolutional code C;.
First stage of decoding:

At the first stage, v is estimated using the received sequence R. Recall, that at the
first stage of encoding, the trellis is isomorphic to the trellis of the convolutional code Gy
used at the first level, with each branch of the trellis corresponding to a coset in B;. Each
coset in B; can be written in the general form wp + ;, where wy € [%/). Let us call this
isomorphic trellis C;. Hence, each branch of ¢ consists of 2% points, corresponding to the

2°! points in ;. The trellis C, is used to form the trellis /\(C"l), where
MC) 2 (Mv):vedy). (5.1)

The trellis A(C;) will be used for decoding at the first stage. Any code sequence in ACy)

can be written in the form

/\(¢1(U1) + w,) (52)

where u; is a code sequence in C; and w, is a sequence of points from €, ie, w =
{(wr1, 012,013, +) w1 € Q for 1 < i < o0}. Standard soft-decision Viterbi decoding? is
performed on R using the trellis A(C;). This yields a code sequence A(¢1(V1) +@,) in A(Cy)
which is closest to the received sequence R in terms of squared Euclidean distance. The code
sequence V; forms an estimate of the sequence vy. &, denotes a sequence of points from 2,.
Since V; is a code sequence in C\, the estimate of the information sequence associated with

the first level can be obtained from v,.

?We will use minimum squared Euclidean distance as the decoding metric for both the AWGN and fading
channels.
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The i-th stage of decoding:

The second and subsequent stages of decoding are very similar to the first stage of
decoding. For 2 < i < g, let us consider the i-th stage of decoding. The previous i — 1 stages
of decoding give us estimates of v}, denoted by ¥; for 1 < j < (i - 1). Using arguments
similar to that given above, we form the isomorphic trellis §;, where any code sequence in

-

C; can be expressed in the general form
$1(V1) + d2(Va) + -+ + disa(Vic1) + iuy) + wy (5.3)

where u; is a code sequence in the convolutional code at the i-th level, C; and w; is sequence
of points from ;. Each branch of C; consists of 2% points, corresponding to the number of

points in Q. The trellis C; is used to form the trellis A(C:), where
MC)E Mv):ve Gy (5.4)

The trellis A(C;) will be used for decoding at the i-th stage. Standard soft-decision Viterbi

decoding is performed on R using the trellis A(C;). This yields a code sequence
Mo (V1) + d2(V2) + -+ + Gi-1(Vic1) + Si(Vi) + @) (5.5)

in A(C;) which is closest to the received sequence R in terms of squared Euclidean distance,
where ¥ is a code sequence in the convolutional code used at the i-th level, C, and w; is
a sequence of points from ;. The code sequence ¥; forms an estimate of the sequence Vj.
Since V; is a code sequence in Cj, the information sequence associated with the i-th level can

be obtained from v;.

The branch metric ( squared Euclidean distance ) for each branch in XCi), 1<i<y,
is calculated by taking the m received signals corresponding to that branch and finding the
element in the coset corresponding to that branch, which is closest to the m received signals
in terms of Euclidean distance. This process of finding the closest element in the coset is
termed as closest coset decoding. The Euclidean distance corresponding to the closest

element in the coset becomes the branch metric. If m is small, calculation of the branch
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metric does not represent a formidable task, however if m is large and if Q;, 1 <1 <q,has
trellis structure then a trellis can be used to calculate the branch metric. In addition, if the
number of states associated with the trellis structure of Q; is big, multi-stage decoding for
§li can be used to further reduce the decoding complexity. Multi-stage decoding of §); would

be carried out in the same way as proposed in [10, 11].

Another way of reducing the decoding complexity associated with closest coset decod-
ing would be as follows: Consider a trellis C',s up, where any code sequence in the trellis C',s up

can be written in the following form:

$1(V1) + d2(Va) + oo + i (Vicr) + iu;) + WP (5.6)

where w?uP is a sequence of points from qup’ and the rest of the sequences are as before.
If ©; € 9P then the trellis C; is a subcode of the trellis CPUP. As such, instead of using
C; we can use CUP at the i-th stage of decoding. Qf P can be chosen to have a simpler
trellis structure as compared to that of ;. This would reduce the complexity associated

with closest coset decoding and hence reduce the decoding complexity associated with

the i-th stage of decoding.

Multi-stage decoding leads to error propagation. To reduce the effect of error propagation,
the first couple of decoding stages should be powerful. A special case of the decoding
algorithm occurs for ¢ = 2 and k; = n,. If closest coset decoding at the first stage is
carried out in a single-stage, then the overall decoding of the multi-dimensional code is also
one-stage. If m is small, then one-stage closest coset decoding is feasible, however if
m is large, multi-stage closest coset decoding could be adopted to reduce the decoding

complexity. The overall decoding in the latter case would then be multi-stage.
Decoding complexity of the proposed decoding algorithm :

The complexity of the proposed schemes will be measured in terms of the number of
computations required for the decoder to produce an estimate of each 2-dimensijonal PSK

signal. For 1 <1 <gq, let 4; be the total encoder memory of the convolutional code used at

16



the i-th level in the proposed scheme. Consider the i-th stage of decoding. Then, due to the
Viterbi algorithm alone, the complexity is 2"+ additions and 2%(2% — 1) comparisons, per
m x 2-dimensions ( since each branch has m MPSK signals ). The branch metric calculation
forms an additional complexity and depends upon the choice of the inner codes. Let us call
this complexity Bc,. Hence the total complexity per m x 2-dimensions is : (1) X, 2mith
additions; (2) %, 2%(2% — 1) comparisons; and Y!_) Bc,. Dividing this total complexity
by m would give us the number of computations required per 2-dimensions (i.e., the number

of computations required to decode a single MPSK point ).
6. Design Rules for Good Codes

The performance of codes designed using the proposed technique depends upon vari-
ous factors. If all the design considerations are followed strictly, the codes usually would
achieve good performance and in some cases, with reduced decoding complexity. Some of
the most important design considerations are: (1) the number of levels g, in the multilevel
concatenation should be kept as low as possible. The advantages of this are twofold. First,
reducing the number of encoding levels, would reduce the number of decoding stages and
in most cases reduce the decoding complexity. Secondly, reducing the number of decod-
ing levels also decreases the amount of error propagation which occurs as a result of the
multi-stage decoding. To reduce the error propagation due to multi-stage decoding, the first
few levels should be chosen extremely powerful, so that the amount of error propagation
is decreased. This however leads to higher decoding complexity for the first few levels; (2)
the number of dimensions, i.e., m x 2, should be kept as low as possible. As m increases
the number of nearest neighbors associated with the code also start increasing, which limits
the performance of the code. On the other hand, increasing m usually helps in decreasing
the normalized decoding complexity associated with the code; (3) theorem 5 gives us the
minimum squared Euclidean distance of the overall multi-dimensional TCM code. For a
given minimum squared Euclidean distance of the TCM code, dB_free of the convolutional

codes chosen to form the multi-dimensional TCM code should be chosen to be as small as
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possible. Lower dp_{;0e Would imply lower decoding complexity associated with the convo-
lutional code decoding. The above also holds for theorem 6; (4) the branch computation
complexity Bg, at the i-th stage of decoding depends upon A;. If A; is chosen to have a
simple trellis structure, the corresponding branch computation complexity will be minimal.
If on the other hand, the trellis for A; is sufficiently complex, techniques described in section
5 can be used to reduce the computation complexity. These techniques however, usually
lead to degraded performance; (5) construction of codes with good phase invariance, places
restrictions on codes as per theorem 7 and hence in most cases this would limit either the

performance and/or the achievable spectral efficiency.

Most design considerations mentioned above lead to conflicting requirements. Hence,
there is a tradeoff involved between performance, decoding complexity, spectral efficiency

and phase invariance.
Appendix A

Proof of theorem 7: The proof follows very closely the derivation of the phase invariance
conditions in [16]. For the code to be phase invariant by 180°/2¢~*, any code sequence in the
multi-dimensional code when rotated by 180°/2¢=* should produce another code sequence.
Let V be the transmitted code sequence. Let VIOt denote the code sequence V rotated
by 180°/2'-*. Recall from section 3, that the basic building block of the proposed multi-
dimensional codes is Ag, hence any valid code sequence in the multi-dimensional code can
be considered to be a sequence of points from Ag. Consider the j-th time instant. Let
Vi=MVyj*Vaj* --- V) be the transmitted sequence of m MPSK signals at the j-th
time instant, where, Vij € Cp; for 1 <i < £. Also, let ijt = A(V{gt*vggt* .. *V{J"t)
be the sequence of m MPSK signals for VIOt at the j-th time instant, where, virJot € Co,i

for 1 <i <{. Using results of [16], V] Ot can be written in the following form :
VIO = M(Vig + Vig) « (Vag + Vag) x - % (Vg + Viy)), (4.1)
whereV;J =0for1 <i<h, VLJ =1 andV;J=VhJ-Vh+1J---Vi-m forh<i<{fand
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0 denotes the all-zero sequence of length m. Form the sequence V', such that the j-th time

instant of V' is:

Vi=A(Vig*x Vays oo 2 Vy) (A.2)

Then, for the code to be phase invariant under rotations of 180°/2¢~* V' should also be a
valid code sequence. Sequences of signal points from A,_ form a valid code sequence. Hence,

if Vj € Ag-1 then V is phase invariant under rotations of 180°/2*,i.e.,if 1 € C,_; 4 and
VhJ . vh+lj e vi—lj € Cyyiforh <1 < ¢, (A.3)
then V is phase invariant under phase rotations of 180°/2¢-*. Since the above should hold

for any transmitted sequence V, the theorem follows.
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Table 1 Optimum Branch Distance Rate 1/2 Codes

('] G |9B.free ' | MB.free” | 9H.free " | VH.free” ]
4
JIONEE NN
2 (2)8 3 1 3 1
3 (654)8 4 1 5 1
4 (33)8 5 2 5 1
NI ERE
6 (6%14)8 7 4 8 2
7 (g‘;g)s g 6 9 2
(=) s [+ [ o | -
10 (gg;g )8 10 3 12 2

t . Total encoder memory

! : Minimum free branch distance

4 . Number of codewords with branch distance dB_free
I': Free Hamming distance

* : Number of codewords with Hamming distance dH-free

Note: The code generators have been listed in octal, where the octal representation of zyz

is4-r + 2.y + z and z, y and z denote 3 binary bits.



Table 2 Optimum Branch Distance Rate 2/3 Codes

L' ] G 1 dB.tree * | MB.free” | 9H.free © | NH.free
2 (g f 2)8 2 4 3 2
4 (2 : g)s 3 5 3 1
()| ¢ | 7 6 3
8 (22 206 gg )R 5 14 6 1
10 (gg o 505)3 6 30 6 1

. Total encoder memory

! : Minimum free branch distance

4 : Number of codewords with branch distance dB _free

U Free Hamming distance

* : Number of codewords with Hamming distance dY free

Note: The code generators have been listed in octal, where the octal repre‘sentation of zyz

is4-z + 2.y + zand z, y and z denote 3 binary bits.



Table 3 Optimum Branch Distance Rate 3/4 Codes

[ ' I G l dB.free ' I NB—freeA ] dH-free - I NH-freeiq
0 6 6 2 \
3 ( 6 6 2 4 2 11 3 -3
6 222/,
71 0 4)
6 ( 5 7T 17 3 16 ] 8
0 56 7 )a
74 2 34 0
9 ( 4 7 74 74 ) 4 30 5 1
54 0 4 74/,

': Total encoder memory

! : Minimum free branch distance

& : Number of codewords with branch distance dB-free

U Free Hamming distance

* : Number of codewords with Hamming distance dYfree

Note: The code generators have been listed in octal, where the octal representation of zyz

is4-z 4+ 2.y + z and z, y and z denote 3 binary bits.
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Part 11

CODES FOR THE AWGN AND FADING CHANNELS

Abstract
In this paper, we will use the construction technique proposed in the previous part to con-
struct multi-dimensional TCM codes for both the AWGN and the fading channels. Analyti-
cal performance bounds and simulation results show that these codes perform very well and
achieve significant coding gains over uncoded reference modulation systems. In addition,
the proposed technique can be used to construct codes which have a performance/decoding

complexity advantage over the codes listed in literature.

1. Introduction

As was pointed out in part one of the paper, for modulation codes over the AWGN
channel, the main parameter of interest is the minimum squared Euclidean distance between
the transmitted code sequences and the number of nearest neighbors. Detdils on the above
parameters are available in [1,2] and as such, we will not reiterate these design considerations
here. The aforementioned design considerations will be the basis of construction of the

modulation codes for the AWGN channel in this paper.

If the channel is changed to a fading channel, most codes designed for the AWGN channel
no longer perform well, simply because the design parameters of a modulation code which
need to be optimized for the fading channel are different from that for the AWGN channel.

For the fading channel, we shall consider two scenarios. For the first case, we shall consider






the Rayleigh fading channel with slow fading, coherent detection, no channel state informa-
tion, independent symbol fading and minimum squared Euclidean distance as the decoding
metric. These assumptions have been considered, so as to enable us to compare our codes
with the ones listed in lite.rature. Examples 3 and 4 construct codes for this scenario. For
the second case, we consider the MSAT channel with light shadowing. Example 5 constructs

a code for this case.

We would like to add, that the code construction technique is universal and is by no means
restricted by the aforementioned assumptions. For the fading channels in general, the error
performance of a code primarily depends on its minimum symbol distance, minimum product
distance and path multiplicity. It depends on the minimum squared Euclidean distance to
a lesser extent. Detailed discussion on these parameters of interest is given in [3, 4] and
as such, we will not reiterate these design considerations here. The dominant parameter
of interest is however the minimum symbol distance, and as such we will concentrate on

optimizing this parameter, when we construct codes for the fading channel.

This paper is organized as follows: In section 2 of this paper, we will derive general
analytical bounds on the performance of the modulation codes using the multi-stage decoding
techniques proposed in part one of this paper. In section 3, we will construct examples using

the proposed technique and compare them with the codes listed in literature.
2. Performance Analysis

In this section, we will derive a general expression for the bit-error-probability of the
multi-dimensional TCM codes decoded using the multi-stage technique proposed in section

5 of part 1.

For 1 <1 < ¢, let X; be a random variable, where the value of X; denotes the number
of bit errors at the i-th decoding stage at a particular time instant ¢. Hence, 0 < X; < k.
Then, the bit-error-probability of the multi-dimensional TCM code, denoted Py(e), is:

9

P()=E (X X)/ Y k= (B(X) + E(X2) + - +E X)Xk (1)

=1 t=1 =1



where E (-) denotes the expectation operator. For 2 < i < ¢, E (X;) can be broken up
into two terms, the first one being the expected number of errors at the i-th stage assuming
that the previous i — 1 stages of decoding are correct and the second one being the expected
number of errors at the i-tﬁ stage due to erroneous decoding at either one of the previous

it — 1 stages of decoding, i.e., the error propagation term. Hence,

E (Xi) < (E (Xi)lerror propagation -pe) + E (Xi)li¢n stage error (2.2)

where E (Xi)|error propagation denotes the error propagation term, pg, denotes the proba-
bility of error propagation from the previous stages and E (Xi)[; i1, stage error denotes the
term due to erroneous decoding at the i-stage, assuming that the previous i — 1 stages of

decoding are correct. Hence, (2.1) can be rewritten in the following form:

9

Pie) < (1B (¥)lerror propagation 75) + 2(E (Xlah stage exror))/ 1o Ki (29)

i=2
Except for a few specific cases, it is not possible to obtain a general expression for the
expected number of bits in error due to error propagation. The expected number of bits in
error due to error propagation, depend on both the choice of the inner codes as well as the
outer codes, as will be shown in the examples to be discussed later in this paper. As such,

we will therefore derive a general expression for the rest of the terms in (2.3).

Let 'V be the transmitted code sequence. Using (3.12, part 1) V can be written in the
form, A(¢1(v1) + d2(v2) + -- -+ #4(vq)), where v; for 1 < i < q denotes a code sequence in

the convolutional code at the i-th stage, C;.

For 1 <1< (¢—1), let us consider the term E (Xi)li-th stage error’ Recall from section
5 ( part 1), that at the i-th stage of decoding, we form the trellis A(C;), where a code
sequence in /\(C~'.-) is of the form, A(¢1(V1) + #2(V2) + -+ + $i-1(Vic1) + di(u;) + wi),
where u; is a code sequence in the convolutional code at the i-th level, C;; w; is sequence
of points from € and for 1 < j < (i — 1), V; denotes the estimate of vj. Since we are
considering the term E (X;)|; ), stage error vi=vjfor 1 <j < (i-1). Also, since C;

is a linear code, the code sequence u; can be written in the form, u; = v; + e, where e
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is code sequence in C;. As such, any code sequence in )\(C’;) can be rewritten in the form,
V = Aé1(v1) + 2(va) + -+ + dio1(Vi-1) + ¢i(vi + €) + w;). Say, that the decoder at the
i-th stage of decoding decodes the code sequence associated with the convolutional code to
be v + e, and let the probability that the event occurs be pe. The exact expressions for pe
can be found in (1, 2] for the AWGN channel and in (3] for the Rayleigh fading channel. Let
I denote the number of non-zero information bits associated with the sequence e. Then
the expected number of bits in error ( per decoding time instant ) due to the sequence e is
I¢ - pe. Since e is any arbitrary code sequence in the convolutional code C;, the total number
of bits in error at the i-th stage, E (X)li-th stage error is obtained by considering all the

possible code sequences and adding up all the I¢ - pe terms, i.e.,

E (Xi)l;.th stage error <> lepe (2.4)

eEC.‘

where C; denotes the set of all the code sequences in the convolutional code, C;.

Special Case - AWGN Channel: For the results derived above, let us consider the special
case when the channel is AWGN. Let V be the transmitted code sequence and let V be the
decoded code sequence. Both these sequences have the form as given earlier. Let D2 denote
the minimum squared Euclidean distance between V and V. Since v; for 1 < j < (i—1)
is arbitrary, D2 has been taken to be the minimum over all possible transmitted code
sequences for a fixed e. This is the worst case scenario, and as such the minimum squared
Euclidean distance D? gives us an upper bound on the performance of ‘the code. Also,
let Ne be the number of codewords at a squared Euclidean distance of D? from V. The
probability that V is decoded incorrectly depends upon béth D? as well as N, [2]. The code
sequences v; and e can be written in the general form, v; = (vi1,vi2, -+ ,vip,+--) and
e = (e1,€2, *** ,€p, ) where v;, and e, for 1 < p < oo denotes the output sequence ( n;
bits ) of vi and e respectively at the p-th time instant. The minimum squafed Euclidean
distance between V and V at the p-th time instant depends only on e, and let this squared
Euclidean distance be denoted by Dfp. Also, let N, be the corresponding number of nearest

neighbors (2]. Then, DZ = 5272, D? and Ne =[I2, N.,. D} and Ne can be evaluated using
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the technique proposed in [2].

E (Xq)|q_“[1 stage error depends on whether the ¢-th level of encoding uses a convo-
lutional code or is left uncoded. If a convolutional code is used at the g-th level, then
the expressions for E (Xq)lq-th stage error € the same as those derived above. However,
if the g-th level is left uncoded then E (Xq)lq-th stage error €20 be upper bounded as:
E (Xq)lq-th stage error < BER; - k;, where BER, denotes the decoding error probability (
i.e., the block error probability ) for the last stage of decoding, i.e., the block of k, bits at
the ¢-th stage of decoding would be declared to be in error if at least one of the bits is in
error. The block error probability would depend on the decoding algorithm used at the g-th
stage, i.e., single-stage or multi-stage. The block error probability can be calculated using

results of [5].

A very interesting and special case of the results derived above occurs when g = 2 and
the second level outer code is left uncoded, as shown in figure 2 ( part 1 ). For this special
case, we can get a closed form expression for Py(e). Using (2.1) and (2.2), Py(e) can be

written in the form,

Py(e) < ((Z;E (X3l stage err;)r) +(E (X2)lerror propagation) * PE.)/ (k1 + k2),  (2.5)

E (X1)|1.st stage error can be derived using (2.4). E (X;)|g.pq stage error Can be upper
bounded as, E (X3)|9.p4 stage error < BER; - k. Let V be the transmitted code sequence.
Then, using (3.12, part 1 ), V can be written in the form, A(¢;(v1) + w,) Wilere vi is a code
sequence in the convolutional code used at the first level, C; and w is a sequence of points
from ;. Let the decoded code sequence associated with the convolutional code be v+ e,
where e is a code sequence in C;. pe gives us the corresponding probability of this event.
Let wy(e) denote the branch weight of e. Hence, the error sequence e will cause at most
wy(e) blocks of k; bits at the second stage to be in error, 1.e., the number of bits in error at
the second stage of decoding, due to the error sequence e is < k, - wy(e). Using arguments

similar to those used to derive (2.4), (E (X2)lerror propagation * PE:) can be upper bounded
as, (E (X2)lerror propagation ' PEs) < LeeC, k2 - ws(e) - pe.
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3. Examples

Examples 1 and 2 construct codes for the AWGN channel, examples 3 and 4 construct
codes for the Rayleigh fading channel and example 5 constructs a code for the light shadowed
mobile satellite communication (MSAT) channel. In the following, we will use (n, k,d) to

denote a linear block code of length n, dimension k and minimum distance d. _.

Example 1: Consider the case of m = 8,¢ = 2 and choose S = 8PSK. Hence ¢ = 3.
Figure 1 shows the two-dimensional 8PSK signal constellation of unit energy, in which each
signal point is uniquely labeled with 3 bits, abc, where a is the first labeling bit and ¢ is
the last labeling bit. The labeling is done through signal partitioning process [1]. Choose
Co1 = (8,4,4) Reed-Muller (RM) code, Co; = C12 = (8,7,2) code, Coz = Cy3 = (8,8,1)
code and Cy,; = (8,1,8) code. The minimum squared Euclidean distance of Ay = A(Qp) is
2.344 and for Ay = A(Q;) is 4.0 [5]. The encoder structure will be the same as that in figure
2 ( part 1 ). A rate-2/3 code will be used at the first level. Two choices will be considered
for the convolutional code at the first level. The first choice is the 4-state, dB.free = 2 code
from Table 2 ( part 1 ) and the second choice is the 16-state, dg_f;ee = 3 code from Table
2 ( part 1 ). The phase invariance of the resulting code is the same for both the choices
and is 45° and can be derived by a straightforward application of theorem 7 ( part 1 ). The
spectral efficiency is also the same for both the choices and is equal to (16 + 2)/8 = 2.25
bits/symbol. The mapping ¢, used is linear. Details of ¢, have been omitted due to lack of

space. The following gives a detailed discussion for both the choices :

4 state: The minimum squared Euclidean distance of the code is (refer theorem 5, part 1):
min{4.0,2.344 - 2} = 4.0. Using (3.12, part 1), any code sequence in the super trellis can be
written in the form, A(¢1(v1)+w;) where v, is code sequence in the 2/3- rate convolutional
code used at the first level, and w, is sequence of points from ;. As such, the super trellis
for this code is isomorphic to the trellis of the convolutional encoder used at the first level,
with each branch of the trellis consisting of 2!¢ parallel transitions corresponding to the 2!¢

elements of (2;. ©, has a 4-state, 8-section trellis diagram [5]. Each branch of the super



trellis can be expressed in the form, A(wp + ;) where wy € [Q/$%]. Hence, each branch
of the super trellis has a 4-state, 8-section trellis, which is isomorphic to the trellis of ;.
Standard Viterbi decoding can be used on every branch of super trellis using this 4-state,
8-section isomorphic trellis to find the most probable parallel transition. The trellis of
the overall multi-dimensional code can thus be viewed as a nested trellis diagram, i.e., a

trellis within a trellis.

A reduction in the decoding complexity can be achieved by using the multi-stage de-
coding algorithm proposed in section 5 ( part 1 ). The decoding now proceeds in two stages.
Let V be the transmitted code sequence. Using (3.12, part 1) V can be written in the form,
Alp1(va) + w%r) where v, is a code sequence in the convolutional code C; used at the first
level, and w}r is a sequence of points from ;. At the first stage of decoding, we form the
trellis C,lsup where any code sequence in C'fup can be written in the form ¢;(u;) + wfup,
where wfup denotes a sequence of points from qup and uj is a code sequence in C;. The
details of how the trellis C; P is formed were mentioned in section 5 (part 1). Q7P is cho-
sen to be: Q3"P = (8,1,8)#(8,8,1)%(8,8, 1) which has a very simple 2-state trellis structure.
On the other hand, §; has a 4-state 8-section trellis diagram which is more complex than
the trellis structure of quP. This helps in reducing the closest coset decoding complexity
associated with the first stage of decoding. Standard Viterbi decoding is performed on the

received sequence using the trellis A(C7'¥) to obtain an estimate of vy, denoted ¥;. This

completes the first stage of decoding.

At the second stage of decoding, we construct the trellis C, where a code sequence in C,
is of the form, ¢;(¥;) +w; where w; denotes a sequence of points from §;. Counsider the p-th
time instant. The structure of C; at the p-th time instant is of the form, Cap = $1(V1,)+
where ¥, is the component of ¥; at the p-th time instant. This trellis C,, is isomorphic

b where wtl is the

to the trellis 2, and this trellis can be used to obtain an estimate of (R 1p

term in w{'r corresponding to the p-th time instant.

The decoding complexity associated with the second stage of decoding can be further



reduced by using the 3-stage decoding technique for Q; proposed by Sayegh [6] and Tanner
(7). We will carry out the second stage of decoding using the 3-stage decoding technique

mentioned above 2.

The multi-stage decoding algorithm does lead to a slight degradation in performance,
however, as will be shown in the performance curves, the loss is negligible as compared to
the reduction in complexity. The following gives the number of computations associated
with both the optimal and the multi-stage decoding algorithm for the 4-state trellis. The
complexity calculation for the multi-stage decoding algorithm has been carried out assuming

the 3-stage decoding for the second stage, as mentioned above.
Computation Complexity - Optimal Decoding Algorithm: v; =2 and k; = 2.

The branch decoding complexity Bg, is: (1) since there are eight 8PSK points per branch,
the distance computation complexity per branch is 64; (2) survivor calculation for the parallel
branch transitions in £, requires 32 compares; and (3) the Viterbi decoding for 2 requires 52
adds and 27 comparison to calculate the final survivor ( assuming the survivor for the parallel
transitions has been found ). Since there are 8 cosets, the total complexity is 416 adds and
216 compares, i.e., Bc, = 416 adds + 248 compares + 64 distance computations. Hence,

total complexity is 54 adds + 32.5 compares + 8 distance computations per 2-dimensions.
Computation Complexity - Multi-stage Decoding Algorithm: v =2 and k; = 2.
The branch decoding complexity is:

First stage of decoding: (1) there are eight 8PSK points per branch, hence the distance
computation complexity per branch is 64; (2) the sub-optimal distance estimates 7] require
48 compares; (3) Viterbi decoding of quP requires 14 adds and 1 compare. Since there are

8 cosets, the total complexity is 112 adds and 8 compares.

Second stage of decoding: (1) the multi-stage decoding technique requires 26 adds and

13 compares. Hence, total complexity is 19.25 adds + 10.125 compares + 8 distance com-

INote, the first stage of the 3-stage decoding process for Q; can actually be combined with the first stage
of decoding of the TCM code, i.e. the stage which uses the trellis C.:sup'



putations per 2-dimensions.

Figure 2 shows the simulation results of the bit-error-performance of both the optimal and
the multi-stage decoding algorithm. An upper bound on the bit-error-rate of the proposed
code is also shown in figure 2. Details of the bound have been omitted due to lack of space.
Also shown in the figure is the bit-error-performance of a hypothetical uncoded PSK system

of the same spectral efficiency {9).

Figure 2 shows that the multi-stage and optimal decoding curves converge around Ey/N, =
8dB, and the performance of the optimal curve is only slightly better at low SNR. The pro-
posed code achieves a coding gain of 2.8 dB at the decoded bit-error-rate of 10-¢ over the
uncoded reference system of the same spectral efficiency [9]. In addition, the decoding com-
plexity of the optimal decoding algorithm is roughly about 3 times the decoding complexity

of the sub-optimal one.

Pietrobon et. al. do not have a comparable code over 8 x 2-dimensions, hence comparison
will be made with a 4 x 2-dimensional code over 8PSK with v = 2 and phase invariance
= 45°. Spectral efficiency of this code is 2.25 bits/symbol, same as that of the proposed
code. The performance curve of this code, taken from [11], has also been shown in the
figure. The complexity of the Pietrobon code is 24 adds + 17 compares + 8 distance
distance computations per 2-dimensions. As can be seen from the figure, the proposed
code outperforms the Pietrobon code by roughly 0.4 dB at 4 - 10~® bit-error-rate, and in
addition, the complexity of the proposed code with multi-stage decoding is less than that of

the Pietrobon code.

16 states: The minimum squared Euclidean distance of the code is (refer theorem 5, part
1) min{4.0,2.344 - 3} = 4.0. The super-trellis in this case is very similar to the 4-state trellis
discussed above, with the only difference that the 4-state convolutional code at the first level,
has been replaced by the 16-state trellis. Both the optimal and the multi-stage decoding
techniques will be investigated for this case also. The complexity associated with the optimal

and the multi-stage decoding technique are:



Computation Complexity - Optimal Decoding Algorithm: y; =4 and &; = 2.

The branch decoding complexity Be, is the same as the 4-state case. Therefore, total

complexity is 60 adds + 37. compares + 8 distance computations per 2-dimensions.
Computation - Complexity - Multi-stage Decoding Algorithm: 71 =4 and k = 2.

The branch decoding complexity is the same as the 4-state case. Therefore, total com-

plexity is 25.25 adds + 14.625 compares + 8 distance computations per 2-dimensions.

Figure 3 shows the bit-error-performance of the both the optimal and the sub-optimal-
decoding algorithm. An upper bound on the bit-error-rate of the proposed code using the

multi-stage decoding algorithm is also shown in figure 3.

Figure 3 shows that the multi-stage and the optimal decoding curves exhibit the same
characteristics as the 4-state case. The two curves converge around Ey/Ny = 6.54 dB, and
the performance of the optimal curve is only slightly better than the optimal curve at low
SNR. The proposed code achieves a coding gain of 3.2 dB at the decoded bit-error-rate
of 107° over the uncoded reference system of the same spectral efficiency [9]. In addition,
the decoding complexity of the optimal decoding algorithm is roughly about 2.5 times the

decoding complexity of the multi-stage one.

Pietrobon et. al. do not have a comparable code over 8 x 2-dimensions, hence comparison
will be made with a 4 x 2-dimensional code over 8PSK with v = 3 and phase invariance =
45°. Spectral efficiency of this code is 2.25 bits/symbol, same as that of the proposed code.
The performance curve of this code, t.a.ken from (8], has also been shown in the figure. The
complexity of this code is 48 adds + 32 compares + 8 distance distance computations per
2—diﬁ16nsions. The performance of the proposed code is slightly better than the Pietrobon
code and in addition the complexity of the Pietrobon code is about 2 times higher than that

of the proposed code with multi-stage decoding.

The 16-state proposed code with the multi-stage decoding algorithm achieves better

performance than the 4-state proposed code with the multi-stage decoding algorithm at the
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cost of slightly increased decoding complexity. The improvement in performance is due to
the higher minimum squared Euclidean distance of the first decoding stage of the 16-state
code. This leads to better performance at the first decoding stage and as a result reduced

error propagation onto the second decoding stage.

Example 2: Consider the case of m = 16,9 = 3 and choose S = 8PSK. Hence ¢ = 3.
Choose Cy,; = (16,4,8) code. This code is obtained from the first order Reed-Muller code
of length 16, by removing the all ones vector from the generator matrix of the (16,5) code.
Choose C32 = (16,11,4) RM code, Coz = Co3 = C12 = C13 = Ca3 = (16,15,2) code and
Ci1 = Cyy = (16,0,00) code, i.e., the code consisting of just the all zero codeword. The
minimum squared Euclidean distance for Ag = A(Qp) is 4.0, for A; = A(£;) is 4.0 and for
Az = A(Q) is 8.0 [5]. A rate-3/4 code with 64-states ( second code in table 3 of part 1)
will be used at the first level. Let us call this code . The same rate-3/4 code used at the
first level will be used at the second level. Let us call this code C;. The phase invariance of
the resulting code is 90°. The spectral efficiency is equal to (3 + 3 + 26)/16 = 2 bits/symbol.
The mappings ¢; and ¢, used at the first and second encoding levels respectively have been
chosen to be linear. The minimum squared Euclidean distance of the code is at least (refer
theorem 5, part 1), min{8.0 , 3-4.0 , 3-4.0} = 8.0. Note, that the theorem gives the
minimum squared Euclidean distance associated with the first encoding stage to be at least
12.0. A quick verification of the partitions given above show that the minimum squared
Euclidean distance is actually 3 x 8 x 0.586 = 14.064. This is obtained by considering the
squared Euclidean distance due to the (16, 4) code of % and multiplying it by the free

branch distance of Cj.

Optimal decoding of the multi-dimensional code would require a trellis with 26 - 26 = 212
states. Optimal decoding of the code using this 4096 state trellis would be extremely complex,
and as such we will focus on the multi-stage decoding technique proposed in section 5 ( part

1 ). The multi-stage decoding of the multi-dimensional code proceeds in 3 stages.

Let V be the transmitted code sequence. Using (3.12, part 1) V can be expressed in
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the form, A(¢1(v1) + #2(v2) + w;) where vy is a code sequence in the 64-state convolutional
code Cy, vz is a code sequence in the 64-state convolutional code C, and w, is a sequence

of points from .

First stage of decoding: To simplify the trellis decoding complexity associated with the
first stage of decoding, instead of forming the trellis C; we form the trellis CrYP, where any
code sequence in C,lsup can be written in the form ( refer section 5, part 1 ), $1(u1) + wfuP
where wfuP 1s a sequence of points from quP and u, is a code sequence in C;. quP is
chosen to be, quP = (16,0,00)(16,16,1)* (16,16, 1). quP has a very simple 1-state trellis
structure. On the other hand, {; has a 4-state trellis diagram which is more complex than
the trellis structure of Q?uP. This helps in reducing the closest coset decoding complexity
assoclated with the first stage of decoding. Standard Viterbi decoding is performed on the

received sequence using the trellis C'ISUP to obtain an estimate of vy, denoted ¥,. This

completes the first stage of decoding.

Second stage of decoding: To simplify the trellis decoding complexity associated with the
second stage of decoding, instead of forming the trellis C;, we form é’f up, where any code
sequence in C'QSUP can be written in the form ( refer section 5, part 1), ¢, (\71)+¢2(u2)+w§uP
where w; P is a sequence of points from 03"P and u, is a code sequence in Cp. Q5P is
chosen to be, Q5P = (16,0,00) * (16,11,4) * (16,16,1). 25°P has a S-state trellis structure
[10]. On the other hand, Q, has a 16-state trellis diagram which is more complex than
the trellis structure of quP. This helps in reducing the closest coset decoding complexity
associated with the second stage of decoding. Standard Viterbi decoding is performed on

the received sequence using the trellis C; F to obtain an estimate of vz, denoted V,. This
completes the second stage of decoding.

Third stage of decoding: The third stage of decoding is identical to the second stage of
decoding discussed in example 1. The three stage decoding technique proposed by Sayegh
[6] and Tanner (7] is used to split up the decoding of 2, into three stages. The first stage

decoding of {2, is trivial. Note, the second stage of the 3-stage decoding process for {; can
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be combined with the second stage of decoding of the multi-dimensional TCM code.

Computation Complexity - Multi-stage Decoding Algorithm: v = 6,k = 3,72 =
6, k2 = 3. The branch decoding complexity is:

First stage of decoding: (1) the distance computation complexity per branch is 128;
(2) the sub-optimal distance estimates require 96 compares; (3) Viterbi decoding of o3vP

requires 3 adds. Since there are 16 cosets, the total complexity is 48 adds.

Second stage of decoding: (1) closest coset decoding for 03"P requires 184 adds + 87
compares, which is the trellis decoding complexity of the (16, 11, 4) code [10]. Since there

are 16 cosets, the total complexity is 2944 adds and 1392 compares.

Third stage of decoding: (1) the multi-stage decoding technique for 0, requires 58 adds
and 29 compares. Note, only the decoding complexity of the (16, 15, 2) code has been taken
into account. The decoding complexity of the (16, 11, 4) code is included in the second stage
of decoding for reasons mentioned above. Hence, total complexity is 254.62 adds + 150.81

compares + 8 distance computations per 2-dimensions.

Figure 4 shows the simulation results of the bit-error-performance of multi-dimensional
TCM code. As can be seen from the figure, the code achieves a 4.2 dB coding gain over
uncoded QPSK at 1078 bit error rate. An upper bound on the bit-error-rate of the proposed

code using the multi-stage decoding algorithm is also shown in figure 4.

Pietrobon et. al. do not have a comparable code over 16 x2-dimensions, hence comparison
will be made with a 2 x 2-dimensional code over 8PSK with 4 = 7 and phase invariance =
90°. The spectral efficiency and phase invariance of both codes is the same. This Pietrobon
et. al. code is the best in performance among all the codes listed in [2] for rate 2 bits/symbol.
The performance curve of this code, taken from (8], has also been shown in the figure. The
complexity of the Pietrobon code is about 2 times higher than that of the proposed code,

however, the proposed code has performance comparable to the Pietrobon code at high SNR.

Example 3: Consider the case of m = 2, ¢ = 3 and choose S = 8PSK. Hence ¢ = 3. Choose
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Cor = Coy = Co3 = Ciz2 = Ci3 = (2,2,1) code, C23 = (2,1,2) code and C;; = Cy, =
Ci1 = (2,0,00) code. The minimum symbol distance of Ay = A8) is 1, for Ay = A(Qy) is 1
and for A; = A(2,) is 2 ( refer section 3, part 1 ). The other distance parameters associated
with the three block modulation codes can be found by a straightforward application of the
distance theorem in [4]. A rate-1/2 code with 16-states ( fourth code in Table 1 of part 1
) will be used at the first level. Let us call this code C,. A rate-2/3 code with 16-states (
second code in Table 2 of part 1 ) will be used at the second level. Let us call this code
C2. The phase invariance of the resulting code is 180°. The spectral efficiency is equal to

(1+2+1)/2 =2 bits/symbol. The mappings ¢; and ¢; have been chosen to be linear.

The minimum symbol distance of the code is ( refer theorem 6, part 1 ), min{2, 3-1,5-
1} = 2. Since the minimum symbol distance of the overall modulation code is the minimum
symbol distance of A,, hence the minimum product distance, A? of the modulation code is
(4.0)? = 16.0 ( refer [4] ).

The decoding of this code is carried out in three stages and proceeds exactly as discussed
in section 5 ( part 1 ). The second and third stage of decoding can actually be combined
into one single stage of decoding. The computational complexity calculated below assumes

that the second and third decoding stages have been combined.

The minimum symbol distance of the first stage is chosen to be higher than the rest of
the decoding stages, so as to reduce the effect of error propagation. |
Computation Complexity - Multi-stage Decoding Algorithm: v, = 4,k; = 1,7, =
4,k; = 2. The branch decoding complexity is:
First stage of decoding: (1) the distance computation complexity per branch is 16; (2)
the sub-optimal distance estimates require 12 compares; (3) Viterbi decoding of Q; requires

1 add. Since there are 4 cosets, the total complexity is 4 adds.

Second and third stage of decoding: (1) Viterbi decoding of Q is 2 adds + 1 compares.

Since there are 8 cosets, the total complexity is 16 adds and 8 compares. Therefore, total
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complexity is 58 adds + 42 compares + 8 distance computations per 2-dimensions.

Figure 5 shows the simulation results of the bit-error-performance of the proposed code.
The performance of this code will be compared with the 16-state rate-2/3 code over 8PSK
constructed by Schlegel and Costello [12] for the Rayleigh fading channel. The spectral
efficiency for both codes is the same, however the Schlegel-Costello code has no phase invari-
ance. The performance curve of the Schlegel-Costello code is also shown in figure 5. As can
be seen from the figure, the proposed code outperforms the Schlegel-Costello code by about
1.6 dB at 10™* bit error rate. In addition, the complexity of the Schlegel-Costello code is
64 adds + 48 compares + 8 distance computations per 2-dimensions which is slightly higher

than that of the proposed code.

Example 4: Consider the case of m = 8,¢ = 4 and choose S = 8PSK. Hence £ = 3. Choose
Coy = Ca2 = C32 = C33 = (8,4,4) RM code, Cpy = Cy2 = (8,7,2) code, Co3 = Ci13 =
Ca3 = (8,8,1) code and Cy = C21 = C33 = (8,0,00) code. A rate-3/4 code with 8-states
( first code in Table 3 of part 1) will be used at the first level. Let us call this code C;. A
rate-2/3 code with 16-states ( second code in Table 2 of part 1 ) will be used at the second
level. Let us call this code C;. A rate-3/4 code with 64-states ( second code in Table 3 of
part 1 ) will be used at the third level. Let us call this code C3. The phase invariance of the
resulting code is 180°. The spectral efficiency is equal to (3 + 2 + 3 + 8)/8 = 2 bits/symbol.

The mappings #, 2, ¢3 and ¢4 are chosen to be linear.

The decoding of this code is carried out in four stages and proceeds in a manner similar
to that in example 2. The first stage of decoding is similar to the first stage of decoding in
example 2. qup used to simplify the decoding complexity is, qup = (8,0,00) % (8,8,1) *
(8,8,1). QP has a very simple 1-state trellis which is less complex than the 2-state trellis
of . The second and third stage of decoding is carried out exactly as described in section
5 ( part 1 ). The fourth stage of decoding is carried out using the multi-stage decoding
technique for 23 ( as was explained in example 1 ). The multi-stage decoding of 3 proceeds

in two stages. The first stage of decoding decodes the code C;; and the second stage decodes
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the (33 code. The decoding of C3; can be merged with the second stage of decoding of the
proposed code, and the decoding of C3 5 can be merged with the third stage decoding of the
proposed code. The complexity calculations given below assume that the fourth stage of

decoding of the proposed code has been merged with the previous stages.

Computation Complexity - Multi-stage Decoding Algorithm: v, = 3,k = 3, v, =
4,k = 2,73 = 6, k3 = 3. The branch decoding complexity is: |
First stage of decoding: (1) the distance computation complexity per branch is 64; (2) the
sub-optimal distance estimates require 48 compares; (3) Viterbi decoding of quP requires

7 adds. Since there are 16 cosets, the total complexity is 112 adds.

Second stage of decoding and the 1st stage of the fourth stage of decoding: (1)
closest coset decoding complexity is 36 adds and 11 compares, which is the trellis decoding
complexity of the (8, 4, 4) code {10]. Since there are 8 cosets, the total complexity is 288

adds and 88 compares.

Third stage of decoding and the 2nd stage of the fourth stage of decoding: (1)
closest coset decoding complexity is 36 adds and 11 compares, which is the trellis decoding
complexity of the (8, 4, 4) code [10]. Since there are 16 cosets, the total complexity is
576 adds and 176 compares. Therefore, total complexity is, 202 adds + 108 compares + 8

distance computations per 2-dimensions.

Figure 6 shows the simulation results of the bit-error-performance of th;: proposed code.
The performance of this code will be compared with the 64-state rate-2/3 code over 8PSK
constructed by Schlegel and Costello [12] fo.r the Rayleigh fading channel. The spectral
efficiency for both codes is the same, however the Schlegel-Costello code has no phase invari-
ance. The performance curve of the Schlegel-Costello code is also shown in figure 6. As can
be seen from the figure, the proposed code outperforms the Schlegel-Costello code by about
1.5 dB at 2-107* bit error rate. In addition, the complexity of the Schlegel-Costello code is

256 adds + 192 compares + 8 distance computations per 2-dimensions which is higher than
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that of the proposed code.

Example 5: A statistical model for the shadowed mobile satellite channel has been devised
by Loo (13-16] and this model has been used by other researchers [17-22] to study the error
performance of coded modulation schemes over the MSAT channel. In Loo’s model, there
are three different kinds of shadowing - light, average and heavy. The corr’esponding Rician
factors are 6.16, 5.46 and -19.33 dB, respectively. Therefore, in the shadowed MSAT channel,
a coded modulation system suffers very severe distortion due to randomly changing phase
and multipath fading. Especially, if the Doppler frequency shift is large due to the motion of
vehicle, a coded modulation system faces the error floor phenomenon. We will assume that
the carrier frequency is 870 MHz and the symbol rate is 2400 symbols/sec. Due to randomly
changing phase, perfect phase synchronization is not feasible in the shadowed MSAT channel.
Therefore, differentially detected 8PSK modulation is used. We assume that the speed of
moving object is 92.88 miles/hr. The corresponding normalized fading bandwidth BT is 0.05
where B is the maximum Doppler frequency shift and 7! is the symbol rate. To combat
burst errors, a block interleaver is used for computer simulation. The size of interleaver is
512 8DPSK symbols, and the number of rows of the block interleaver is 64 and the number

of columns is 8.

Consider the case of m = 8,¢ = 3. Hence, £ = 3. Choose Cp; = Cz, = (8,4,4) RM
code, Co; = Co3 = C12 = C13 = C23 = (8,7,2) code and Cy,; = C31 = (8,0,00) code. A
rate-3/4 code with 8-states ( first code in Table 3 of part 1 ) will be used at the first level.
Let us call this code C,. A rate-2/3 code with 16-states ( second code in Table 2 of part
1 ) will be used at the second level. Let us call this code C;. The phase invariance of the
resulting code is 90°. The spectral efficiency is equal to (3 +2+ 11)/8 = 2 bits/symbol. The

mappings ¢, and ¢, used at the first and second encoding levels are linear.

Decoding of the code proceeds exactly as in example 2, and as such, will not be repeated
here. The complexity calculations are also very similar to example 2, and as such details will

be omitted. The total complexity is, 69.25 adds + 31.63 compares + 8 distance computations
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per 2-dimensions.

Figure 7 shows the simulation results of the bit-error-performance of the proposed code.
The performance of this code will be compared with the 16-state rate-2/3 code constructed
by Schlegel and Costello [12] ( this code is chosen, for lack of comparable complexity code
available in literature for the shadowed MSAT channel )- The spectral efficiency for both
codes is the same. The performance curve of the Schlegel-Costello code is also shown in figure
7. As can be seen from the figure, the proposed code outperfprms the Schlegel-Costello code
by about 9.65 dB at 10™* bit error rate. Also, the proposed code faces the error floor at
around 1.4 x 107° bit error rate, whereas the Schlegel-Costello code faces an error floor
around 4.8 x 107° bit error rate. In addition, the complexity of the Schlegel-Costello code is

higher than that of the proposed code.

4. Conclusion

A simple and systematic technique of constructing multi-dimensional TCM codes using
block modulation codes and convolutional codes optimized for branch distance is proposed.
Bounds on the minimum squared Euclidean distance and minimum symbol distance of the
multi-dimensional TCM codes are derived, along with conditions on phase invariance. A
multi-stage decoding technique for the multi-dimensional TCM codes has also been proposed.
Examples constructed show that the technique can be used to construct good codes which
have a performance/decoding complexity advantage over the codes availablé in literature for -

both the AWGN and fading channels.
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Figurel  An 8PSK signal constellation and its signal labels
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